Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Tradit Complement Med ; 14(1): 40-54, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38223805

RESUMO

Background and aim: Zhilong Huoxue Tongyu (ZL) capsule is a classical traditional Chinese medicine (TCM) with satisfactory curative effects. Endothelial cell (EC) dysfunction plays an important role during myocardial fibrosis (MF). But the therapeutic effect of ZL capsule on EC dysfunction remains unknown in the development of MF. This study aims to investigate the effect of ZL capsule on EC dysfunction during MF in vivo. Experimental procedure: The model of MF is established in vivo by injecting isoproterenol for 14 days, simultaneously, we examined the therapeutic effect of ZL capsule on MF in vivo. An integrative approach combining biomarker examination, echocardiography and myocardial fibrosis condition using Hematoxylin-eosin staining, Masson staining, and Sirius red staining were performed to assess the efficacy of ZL capsule against MF. Subsequently, comprehensive immunofluorescence staining was performed to evaluate the therapeutic effect of ZL capsule on EC dysfunction. Results and conclusion: Prior to experiments, analysis of the published single-cell sequencing data was performed and it was discovered that EC dysfunction plays an important role. Further pharmacological results showed that ZL capsule could alleviate fibrosis injury and collagen fiber deposition. The mechanism investigation results showed that the endothelial-to-mesenchymal transition (EndMT) and MHC class-II (MHC-II) expression in EC were improved. In addition, ZL capsule can attenuate the inflammatory response during MF by intervening the activation of CD4+T cell mediated by EC. For the first time, we provided evidence that ZL capsule could improve MF by alleviating EC dysfunction via the regulation of EndMT and expression of MHC-II. Taxonomy classification by evise: Myocardial fibrosis, Chinese Herbal Medicine, Traditional Medicine, Endothelium, dysfunction, Endothelial-to-mesenchymal transition.

2.
Front Pharmacol ; 14: 1197433, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351503

RESUMO

Background: One of the severely debilitating and fatal subtypes of hemorrhagic stroke is intracerebral hemorrhage (ICH), which lacks an adequate cure at present. The Zhilong Huoxue Tongyu (ZLHXTY) capsule has been utilized effectively since last decade to treat ICH, in some provinces of China but the scientific basis for its mechanism is lacking. Purpose: To investigate the neuroprotective role of ZLHXTY capsules for ICH-induced oxidative injury through the regulation of redox imbalance with the Nrf2 signaling pathway. Methods: Autologous blood injection model of ICH in C57BL/6J mice was employed. Three treatment groups received ZLHXTY once daily through oral gavage at doses 0.35 g/kg, 0.7 g/kg, and 1.4 g/kg, started after 2 h and continued for 72 h of ICH induction. The neurological outcome was measured using a balance beam test. Serum was tested for inflammatory markers IL-1ß, IL-6, and TNF-α through ELISA, oxidative stress through hydrogen peroxide content assay, and antioxidant status by total antioxidant capacity (T-AOC) assay. Nuclear extract from brain tissue was assayed for Nrf2 transcriptional factor activity. RT-qPCR was performed for Nfe2l2, Sod1, Hmox1, Nqo1, and Mgst1; and Western blotting for determination of protein expression of Nrf2, p62, Pp62, Keap, HO1, and NQO1. Fluoro-jade C staining was also used to examine neuronal damage. Results: ZLHXTY capsule treatment following ICH demonstrated a protective effect against oxidative brain injury. Neurological scoring showed improvement in behavioral outcomes. ELISA-based identification demonstrated a significant decline in the expression of serum inflammatory markers. Hydrogen peroxide content in serum was found to be reduced. The total antioxidant capacity was also reduced in serum, but the ZLHXTY extract showed a concentration-dependent increase in T-AOC speculating at its intrinsic antioxidant potential. Nrf2 transcriptional factor activity, mRNA and protein expression analyses revealed normalization of Nrf2 and its downstream targets, which were previously elevated as a result of oxidative stress induced by ICH. Neuronal damage was also reduced markedly after ZLHXTY treatment as revealed by Fluoro-jade C staining. Conclusion: ZLHXTY capsules possess an intrinsic antioxidant potential that can modulate the ICH-induced redox imbalance in the brain as revealed by the normalization of Nrf2 and its downstream antioxidant targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...